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Exercise 1: The Known-Fate Model 

This exercise closely follows the content of the 4th lecture and is mostly intended to show how to 

run program MARK to compute survival from 'known-fate' data..  We have prepared 

exercises for use in either MARK or RMark.  

 

 

Data input 

Input data consists of summarized frequencies of encounter-histories. Encounter-history is 

distinguished here from capture-history by having two codes for each occasion - One for capture-

status, and one for recapture-status. The possibilities here are: 11=captured and dead recovery, and 

10=captured and not recovered as dead. 

The example we'll use for this model contains 2 groups of animals: Treatment and Control. So, each 

encounter-history will have 2 frequencies following the encounter-history. The following is a sample 

MARK input file (knownfate.inp): 

/* known fate example (pg 344) */ 

10 19 21   /* 19 treatment-alive, 21 control-alive*/; 

11 38 38   /* 38 treatment-dead,  38 control-dead */; 

 

Explanation: The '10 19 21' means that 19 animals from group 1 (treatment) and 21 animals from 

group 2 (control) were captured in time 1 and were not recovered as dead (ie. they survived). The '11 

38 38' means that 38 animals from group 1 and 38 animals from group 2 were captured in time 1 and 

recovered as dead in time 2 (ie. they did not surive). 
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For R users 

1) Open the file “Known_Fate.r” in your preferred text editor for R (e.g., R Studio, Tinn-R, 

Notepad++).  Note that the hash (#) symbol denotes comments in R and everything on the line 

after that symbol is ignored by R.  The first non-comment lines in the file clear the R workspace 

(memory) and set the working directory(folder) to the folder where you have the exercises.  You 

will need to modify the working directory.  Execute these lines in R.  (In R studio or Tinn-R, place 

the cursor on the first of these lines, then click the ‘Run’ button 3 times.  In Notepad++, highlight 

those 3 lines, copy to clipboard, then paste into R window.) 

 
rm(list=ls())                             #   clear workspace 

setwd('h:/x/workshops/uf2016/exercises')  # set working directory(folder) 

library(RMark)   

 

2) Assuming that you have already created a MARK input file, the first step in using RMark is to 

convert the input file into an RMark input “data-frame”.   (You can think of a data-frame as a 

spreadsheet in R, where you can access the spreadsheet by rows and columns, or by 

variable(column) name.  This conversion is done with the “convert.inp” function.  The only 

required argument is the input filename (knownfate.inp), but since we have 2 groups in our input 

file, we also need to specify the group names to the convert.inp function.  This is done with the 

group.df argument.  The converted data-frame is saved with the R variable name, “mdeerinp”.  

Execute that line, then type the new variable name into the R window. 

 

mdeerinp= convert.inp('knownfate.inp',group.df=data.frame(trt=c('trt','cnt'))) 

mdeerinp 

 

3) The 2nd step is to create a processed-data variable which contains other variables needed to 

setup and run the MARK models.  The variable, “mdeerpr” is a “list” variable, or a variable which 

contains other variables.  The RMark function to do this is “process.data” and requires the 

converted input from the previous step, the type of MARK models which will be run, and the 

group variable name (if applicable).  Execute this line, then type ‘mdeerpr’ to see the contents of 

this variable. 

mdeerpr = process.data(mdeerinp, model='Known', groups="trt") 

mdeerpr 

4) The 3rd step is to create design-matrix data variables, needed by MARK to build models.  The 

RMARK function is “make.design.data” and the processed-data variable created in the previous 

step is needed as an argument to the function.  Execute this line and type ‘mdeerdd’ to view the 

contents of this variable.  This is a list-type variable and it contains a data-frame variable (S) for 
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the estimated parameter for the model-type (Known) we specified.  The columns of S are the 

variables we can use in building MARK models. 

 

mdeerdd = make.design.data(mdeerpr) 

mdeerdd 

Modeling strategy is to develop 2 models. One represents the null hypothesis that there is no 

difference between the survival rates of the deer in the 2 treatments. The other model represents the 

alternative hypothesis that the treatment and control groups show different survival rates (control 

survival > treatment survival).  

 

5) Now we’re ready to build our first MARK model.  With only one survival interval in the data, we 

don’t have a lot of choices in building models.  We’ll start with the most simple model (survival 

equal among treatment and control groups).  To create a model, we call the ‘make.mark.model’ 

function with the processed-data variable created in step 3 (mdeerpr), the design-data variable 

created in step 4 (mdeerdd), title, and list of parameters as arguments.  In this case, there is only 

1 parameter (S) and we specify the model using an R formula.  Here, formula=~1 means the 

parameter is a constant value.  Execute these lines and type ‘mod_null’ to examine what we’ve 

created.  This variable is another list-variable which contains other variables to be used when we 

run the model. 

 

Mod_null=make.mark.model(Mod_null=make.mark.model(Mod_null=make.mark.model(Mod_null=make.mark.model(    

            mdeerpr,mdeerdd,title='MuleDeerdata',mdeerpr,mdeerdd,title='MuleDeerdata',mdeerpr,mdeerdd,title='MuleDeerdata',mdeerpr,mdeerdd,title='MuleDeerdata',    

            parameters=list(parameters=list(parameters=list(parameters=list(    

                        S=list(formula=~1)S=list(formula=~1)S=list(formula=~1)S=list(formula=~1)    

            ))))    

))))    

mod_nullmod_nullmod_nullmod_null    

 

6) We can run the model by calling the ‘run.mark.model’ function with the model variable created 

in step 5 as the argument.  Execute this line then type ‘mod_null_out’ to examine the contents.   

The output from MARK is stored in a text file and by typing ‘mod_null_out’, the text file is opened 

in notepad.  This is the usual output you would get if you ran MARK interactively using its GUI.  

The output is also stored as an R list-variable.  Type ‘str(mod_null_out)’ to display the structure of 

this list-variable.  What is the survival rate estimate from this model?  You can get it from the text 

output displayed in notepad, or by looking at the mod_null_out$results$real$estimate variable. 

 

mod_null_out=run.mark.model(mod_null) 

str(mod_null_out) 

print(mod_null_out) 

print(mod_null_out$results$real) 
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7) To run another model, we only need to repeat the last 2 steps:  create.mark.model, and 

run.mark.model.  With these data, the interest was in whether the treatment affected survival, so 

we’d like to try a model where survival is different for control and treatment groups.  So, we 

make a new mark model, named mod_trt, where survival is different among the 2 groups 

(S=list(formula=~group)).  Execute these lines, as well as the line to run the model 

(mod_trt_out=run.mark.model…).  What are the survival rate estimates for the 2 groups?  Are 

they different?  Are they significantly different?  

 

mod_trt = make.mark.model(mdeerpr,mdeerdd,parameters=list( 

  S=list(formula=~group) 

)) 

mod_trt_out = run.mark.model(mod_trt) 

print(mod_trt_out$results$real) 

 

8) We can create a table of model results by calling the ‘model.table’ function, with the names of 

the variables which contain the output of each model as an argument.  Execute this line, and the 

next line to print the table.  Assuming AIC was covered in the lecture, what does the table tell you 

about the effect of treatment on survival rates?  Do a likelihood-ratio test between models.  Does 

the likelihood-ratio test lead to the same conclusion as model selection? 

 

#                create AIC table of model results for model comparison 

tbl=model.table(model.list=c("mod_null_out","mod_trt_out"),type="Known") 

print(tbl) 

 

Questions: 

 

1. Which model would you choose to best describe these data?  Why? 

2. Does a "z-test" comparison of survival rates between the 2 groups agree with the AIC 

model selection table? 

a. Z = (Scnt-Strt)/(var(Scnt)+var(Strt)) 

b. Need R function, pnorm 

3. Do the probability levels associated with the z-test and likelihood ratio test differ?  If so, 

why? 

a. LR=Pr(Chi-sq, k), where Chi-sq = Lnull-Ltrt and k=dfnull-dftrt 

b. Need R function, pchisq 

 



Exercise 2: The CJS Model 

This exercise closely follows the content of the 5th lecture and is mostly intended to show 

how to run program MARK to compute survival and capture probabilities from 

'capture-recapture' data..  We have prepared exercises for use in either MARK or RMark.  

 

 

Data input 

Background 

Data for this example came from the trapping of meadow voles, Microtus pennsylvanicus, at 

Patuxent Wildlife Research Center, Laurel, MD  (Nichols et al., 1984). Data were collected on a 

10 x 10 grid of trapping stations spaced at 7.6m intervals in old field habitat. A single modified 

Fitch live trap (Rose, 1973) was placed at each station. Hay and dried grass were placed in the 

traps and whole corn was used as bait.  Sampling occurred for five consecutive days each 

month, from June 1981 through December 1981. During each 5day trapping session, traps 

were opened in the evening of the first day, checked the following morning, locked open during 

the day, and reset in the evening, with the sequence repeated each day until 5 days had 

elapsed. A racoon, Procyon lotor (later captured), visited the traps on the final two nights of the 

second trapping session, essentially leaving only 3 days of trapping for this session. At each 

capture, animals were examined for a tag, sexed, weighed, and examined for external 

reproductive characteristics. Tagged animals were ear-tagged with numbered fingerling tags, 

and tag numbers of marked animals were recorded at each capture. 

 

We used 'adult' (>22g) and 'young' (<=22g) animals and collapsed the 5 days of sampling each 

month into a single assessment of presence or absence, leaving six monthly sampling occasions. 

For R users 

1) Open the file “cjs2age.r” in your preferred text editor for.  Note that the hash (#) symbol 

denotes comments in R and everything on the line after that symbol is ignored by R.  The 



first non-comment lines in the file clear the R workspace (memory) and set the working 

directory(folder) to the folder where you have the exercises.  You will need to modify the 

working directory.  Execute these lines in R. 

 

rm(list=ls())                               #   clear workspace 

setwd('h:/x/workshops/uf2016/exercises')    #   set working directory(folder) 

library(RMark) 

 

2) Assuming that you have already created a MARK input file, the first step in using RMark is to 

convert the input file into an RMark input “data-frame”.   (You can think of a data-frame as 

a spreadsheet in R, where you can access the spreadsheet by rows and columns, or by 

variable(column) name.  This conversion is done with the “convert.inp” function.  The only 

required argument is the input filename (mp2age.inp), but since we have 4 groups in our 

input file, we also need to specify the group names to the convert.inp function.  This is done 

with the group.df argument.  The converted data-frame is saved with the name, “mpinp”.  

Execute that line, then type the new variable name into the R window. 

 

mpinp=convert.inp('mp2age.inp', 

  group.df=data.frame(agegrp=c('a','a','y','y'),sex=c('F','M','F','M')) 

) 

Mpinp 

 

Notice that I didn’t name the age-group variable, “age”.  This is intentional and due to the 

fact that RMark has a pre-defined variable named “age”.  The RMark variable, “age” can be 

used for certain things,  but not in this case where we want to classify animals into two 

groups: young at first capture and adult at first capture. We’ll use the “age” variable to 

make models where animals can be “young” in the 1
st

 occasion, then adult after. 

 

3) The 2nd step is to create a processed-data variable which contains other variables needed to 

setup and run the MARK models.  The variable, “mppr” is a “list” variable, or a variable 

which contains other variables.  The RMark function to do this is “process.data” and 

requires the converted input from the previous step, the type of MARK models which will 

be run, and the group variable name (if applicable).  Execute this line, then type ‘mppr’ to 

see the contents of this variable. 

 

mppr = process.data(mpinp, model='CJS', groups=c("agegrp","sex")) 

 



4) The 3rd step is to create design-matrix data variables, needed by MARK to build models.  The 

RMARK function is “make.design.data” and the processed-data variable created in the 

previous step is needed as an argument to the function.  Execute this line and type ‘mpdd’ 

to view the contents of this variable.  This is a list-type variable and it contains a data-frame 

variables, Phi (for apparent survival) and p (capture probability) for the estimated 

parameters for the model-type (CJS) we specified.  The columns of Phi and p are the 

variables we can use in building MARK models. 

 

mpdd = make.design.data(mppr) 

mpdd$Phi 

 

5) In order to build models where animals can be “young” for 1 capture occasion and “adult” 

for other occasions, we need to add a variable to our design-data variable.  We’d like to 

create a new variable for Phi which takes on two values:  

0 if animal is in group, “young” AND months-since-orig-capture <= 0 

1 otherwise 

mpdd$Phi$agecl=1  #   create new variable, agecl 

#        next, get row numbers where group=”y” and age=0 

i=((substr(mpdd$Phi$group,1,1)=="y") & (mpdd$Phi$Age==0))  

mpdd$Phi$agecl[i]=0  #  set new variable to zero for those rows 

print(mpdd$Phi)  #  look at new Phi data-frame 

 

Modeling strategy is to develop  models corresponding to our hypotheses of how survival and/or 

capture probabilities are affected by age, sex and time.  

  

6) Now we’re ready to build our first MARK model.  We’ll start with the most simple model 

(survival constant over time and equal among age/sex groups).  To create a model, we call 

the ‘make.mark.model’ function with the processed-data variable created in step 3 (mppr), 

the design-data variable created in step 4 (mpdd), title, and list of parameters as arguments.  

Here, formula=~1 means the parameter is a constant value.  Execute these 3 lines and type 

‘phi_1_p_1’ to examine what we’ve created.  This variable is another list-variable which 

contains other variables to be used when we run the model. 

 

phi_1_p_1 = make.mark.model(mppr,mpdd,title='Patuxent Mp data',parameters=list( 

  Phi=list(formula=~1), 

  p=list(formula=~1) 

)) 

 



7) We can run the model by calling the ‘run.mark.model’ function with the model variable 

created in step 6 as the argument.  Execute this line then type ‘phi_1_p_1_out’ to examine 

the contents.   The output from MARK is stored in a text file and by typing ‘phi_1_p_1_out’, 

the text file is opened in notepad.  This is the usual output you would get if you ran MARK 

interactively using its GUI.  The output is also stored as an R list-variable.  Type 

‘str(phi_1_p_1_out)’ to display the structure of this list-variable.  What is the survival rate 

estimate from this model?  You can get it from the text output displayed in notepad, or by 

looking at the phi_1_p_1_out$results$real variable. 

 

phi_1_p1_out=run.mark.model(phi_1_p_1) 

Phi_1_p_1_out$results$real 

 

8) To run other models, we only need to repeat the last 2 steps:  create.mark.model, and 

run.mark.model.  With these data, the interest was in whether survival and/or capture 

probabilities were different among age and sex classes, as well as time.  So, we make new 

mark models, with different assumptions about survival and capture probabilities.  Execute 

these lines, as well as the line to run the models. 

 

#                make model with age-specific survival, phi(a)p(.) 

phi_a_p_1 = make.mark.model(mppr,mpdd,parameters=list( 

  Phi=list(formula=~agecl), 

  p=list(formula=~1) 

)) 

phi_a_p_1_out = run.mark.model(phi_a_p_1) 

 

#                make model with age and sex-specific survival, phi(a*s)p(.) 

phi_axs_p_1 = make.mark.model(mppr,mpdd,parameters=list( 

  Phi=list(formula=~agecl*sex), 

  p=list(formula=~1) 

)) 

phi_axs_p_1_out = run.mark.model(phi_axs_p_1) 

 

#                make model with age and sex-specific survival, sex-specific capt. probs, 

phi(a*s)p(s) 

phi_axs_p_s = make.mark.model(mppr,mpdd,parameters=list( 

  Phi=list(formula=~agecl*sex), 

  p=list(formula=~sex) 

)) 



phi_axs_p_s_out = run.mark.model(phi_axs_p_s) 

#                make model with age,sex,time-specific survival, sex-specific capt. probs, 

phi(a*s*t)p(s) 

phi_axsXt_p_s = make.mark.model(mppr,mpdd,parameters=list( 

  Phi=list(formula=~agecl*sex*time), 

  p=list(formula=~sex) 

)) 

phi_axsXt_p_s_out = run.mark.model(phi_axsXt_p_s) 

 

#                make model with age,time-specific survival, sex-specific capt. probs, 

phi(a*t)p(s) 

phi_aXt_p_s = make.mark.model(mppr,mpdd,parameters=list( 

  Phi=list(formula=~agecl*time), 

  p=list(formula=~sex) 

)) 

phi_aXt_p_s_out = run.mark.model(phi_aXt_p_s) 

 

#                make model with age,time-specific survival, sex-specific capt. probs 

#                with additive effect of age on survival 

phi_aPt_p_s = make.mark.model(mppr,mpdd,parameters=list( 

  Phi=list(formula=~agecl+time), 

  p=list(formula=~sex) 

)) 

phi_aPt_p_s_out = run.mark.model(phi_aPt_p_s) 

 

9) We can create a table of model results by calling the ‘model.table’ function, with the names 

of the variables which contain the output of each model as an argument.  Execute this line, 

and the next line to print the table.   

 

tbl=model.table(model.list=ls(pattern="phi.+out"),adjust=T,use.lnl=T) 

print(tbl) 

 Shortcut: Instead of listing all of the models by name in the model list, I used the R 

function, “ls”, which lists all variables in the workspace which start with “phi” and end with 

“out”. 

Questions: 

1. The models with interaction between age and time and additive time + age 
effects were both competitive. In the interactive model, adult survival is higher in 



some months and young survival in others. Can this happen as well in the 
additive model? Why or why not?  

2. In many species of vertebrates, young are predicted to have lower apparent 
survival than adults. Was this true in the example? What biological stories might 
explain the direction of the estimated average difference between young and 
adult survival?  

3. The a priori hypothesis was that males would have higher capture probabilities 
than females. Was this true? What biology might underlie this prediction and 
difference?  

4. Some population models (such as stochastic projection matrices) require 
estimates of true temporal variance of vital rates such as survival. But what other 
source of variation is present in the monthly variation among survival estimates? 
How can the true temporal variance be separately estimated?  

5. The CJS model permits inference about capture and apparent survival 
probabilities, as shown. But under the JS model, we can also estimate 
abundance of adults. How do we do this?  

6. Why can't we estimate the number of young in the same manner as for adults? 
What piece of information are we missing?   

 



Exercise 3: The Multistrata Model 

This exercise closely follows the content of the 6th lecture and is mostly intended to show how 

to run program MARK to compute survival, transition and capture probabilities from 'capture-

recapture' data..  We have prepared exercises for use in either MARK or RMark.  

 

 

Data input 

Background 

Data for this example came from the trapping of meadow voles, Microtus pennsylvanicus, at 

Patuxent Wildlife Research Center, Laurel, MD  (Nichols et al., 1984). Data were collected on a 

10 x 10 grid of trapping stations spaced at 7.6m intervals in old field habitat. A single modified 

Fitch live trap (Rose, 1973) was placed at each station. Hay and dried grass were placed in the 

traps and whole corn was used as bait.  Sampling occurred for five consecutive days each 

month, from June 1981 through December 1981. During each 5-day trapping session, traps 

were opened in the evening of the first day, checked the following morning, locked open during 

the day, and reset in the evening, with the sequence repeated each day until 5 days had 

elapsed. A racoon, Procyon lotor (later captured), visited the traps on the final two nights of the 

second trapping session, essentially leaving only 3 days of trapping for this session. At each 

capture, animals were examined for a tag, sexed, weighed, and examined for external 

reproductive characteristics. Tagged animals were eartagged with numbered fingerling tags, 

and tag numbers of marked animals were recorded at each capture. 

 

We used 'adult' (>22g) animals and collapsed the 5 days of sampling each month into a single 

assessment of presence or absence, leaving 11 monthly sampling occasions.  For each capture, 

the location of capture was recorded.  Individuals captured in locations with X-coordinate in the 

range 1-5, were assigned capture-code ‘1’.  Those captured in locations with X-coordinate in the 

range 6-10 were assigned capture-code ‘2’. 

 



For R users 

1) Open the file “multistrata.r” in your preferred text editor for R.  You will need to modify the 

working directory.  Execute the lines to clear the workspace, set the working directory and 

load the RMark library. 

 

rm(list=ls()); setwd('h:/x/workshops/uf2016/exercises/ex3_multistrata_mp') 

library(RMark) 

 

2) The first step is to convert the input file into an RMark input “data-frame.  This conversion is 

done with the “convert.inp” function.  The only required argument is the input filename 

(mp2age.inp), but since we have 2 groups in our input file, we also need to specify the 

group names to the convert.inp function.  This is done with the group.df argument.  The 

converted data-frame is saved with the name, “mpinp”.  Execute that line, then type the 

new variable name into the R window. 

 

mpinp = convert.inp('multistrata.inp',group.df=data.frame(sex=c('F','M'))) 

 

3) The 2
nd

 step is to create a processed-data variable which contains other variables needed to 

setup and run the MARK models.  The RMark function to do this is “process.data” and 

requires the converted input from the previous step, the type of MARK models which will 

be run, and the group variable name (if applicable).  Execute this line, then type ‘mppr’ to 

see the contents of this variable. 

 

mppr = process.data(mpinp, model='Multistrata', groups="sex") 

 

4) The 3
rd

 step is to create design-matrix data variables, needed by MARK to build models.  The 

RMARK function is “make.design.data” and the processed-data variable created in the 

previous step is needed as an argument to the function.  Execute this line. 

 

mpdd = make.design.data(mppr) 

 

Modeling strategy is to develop  models corresponding to our hypotheses of how survival, 

transition and/or capture probabilities are affected by  sex and time. One of the primary 

objectives of the study was to determine the effects of habitat fragmentation.  Just after the 4
th

 

month, a strip was mowed down the middle of the area.  The hypothesis was that the mowing 

of the strip would cause movement of animals between the two grid halves to decrease after 

the 4
th

 month. 

 



5) Now we’re ready to build our first MARK model.  We’ll start with the most simple model 

(survival transition and capture probabilities constant over time).  To create a model, we call 

the ‘make.mark.model’ function with the processed-data variable created in step 3 (mppr), 

the design-data variable created in step 4 (mpdd), title, and list of parameters as arguments.  

As a reminder, the formula, “~1” means that the parameter is constant over all values of 

time and group (sex). 

 

s_1_psi_1_p_1 = make.mark.model(mppr,mpdd,title='Patuxent MP data',parameters=list( 

  S=list(formula=~1), 

  Psi=list(formula=~1), 

  p=list(formula=~1) 

)) 

 

6) We can run the model by calling the ‘run.mark.model’ function with the model variable 

created in step 5 as the argument.  Execute this line then type ‘s_1_psi_1_p_1_out’ to 

examine the contents.   The output from MARK is stored in a text file and by typing 

‘s_1_psi_1_p_1_out’, the text file is opened in notepad.  This is the usual output you would 

get if you ran MARK interactively using its GUI.  The output is also stored as an R list-

variable.  Type ‘str(s_1_psi_1_p_1_out)’ to display the structure of this list-variable. 

 

s_1_psi_1_p_1_out=run.mark.model(s_1_psi_1_p_1) 

 

7) To run other models, we only need to repeat the last 2 steps for each model.  Run the next 

model by executing the appropriate lines in the file. 

 

s_t_psi_t_p_t = make.mark.model(mppr,mpdd,parameters=list( 

  S=list(formula=~time), 

  Psi=list(formula=~time), 

  p=list(formula=~time) 

)) 

s_t_psi_t_p_t_out = run.mark.model(s_t_psi_t_p_t) 

 

8) To make a model where transition rates were one value before the mowing of the strip, and 

another value after the mowing, we’ll need to create a new design-data variable.  We’ll call 

it “twoper” and set it to zero for the 1
st

 4 months and one for the last 6 months. 

 

mpdd$Psi$twoper=0 

mpdd$Psi$twoper[mpdd$Psi$Time>3]=1 



 

9) We can now build and run our model where transition rates are one value for the 1
st

 4 

months and another value after.   

 

s_t_psi_2per_p_t = make.mark.model(mppr,mpdd,parameters=list( 

  S=list(formula=~time), 

  Psi=list(formula=~twoper), 

  p=list(formula=~time) 

)) 

s_t_psi_2per_p_t_out = run.mark.model(s_t_psi_2per_p_t)  #          run model 

  

10) We can create a table of model results by calling the ‘model.table’ function, with the names 

of the variables which contain the output of each model as an argument.  Execute this line, 

and the next line to print the table.   

 

tbl=model.table(model.list=ls(pattern="s_.+out"),type="Known") 

print(tbl) 

 

Questions: 

(1) This grid was part of an experiment designed to test hypotheses about effects of fragmentation 

on meadow vole population dynamics.  If the fragmentation created by the strips of bare ground 

really affected movement, what predictions would we make about effects of fragmentation on 

the 3 sets of model parameters (survival, capture and movement probabilities)?  

(2) Based on AIC, which model appears to be best supported by the data? What conclusions can 

you draw from this experiment based on the AIC table? Are the parameter estimates themselves 

relevant to conclusions or does AIC provide all of the information that you need?  

(3)  Have a look at the estimates of movement probabilities from the 2 time periods, before and 

after fragmentation. Are they consistent with your predictions?  

(4) Do the results from this grid provide strong inferences about effects of fragmentation? If not, 

what other information would be useful in strengthening the inferences?  

(5) In (1) did you make any predictions about changes in survival probability associated with 

fragmentation?  If so, what was your rationale? The top model provided time-specific estimates 

of survival, so we could compute and compare means for the periods before and after 

fragmentation. Another way to obtain inference about this contrast is to look at estimates 

arising from the 3
rd

 model, in which survival is computed for 2 time periods (before and after 

fragmentation).  What do these look like? Are they consistent with predictions? 
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Heterogeneity and Exploitation: Exercise 11 

 

Uses spreadsheet file, “Ex11_het_surv_harv.xlsx” 

For the purpose of this exercise, we will define “demographic heterogeneity” as variation among 

individuals of a population in vital rates (survival or reproduction) that is not associated with any visible 

trait of the organism. For example, individuals within our population may vary in underlying survival 

probabilities (perhaps we have a high-survival group and a low-survival group), but there is no 

morphological or behavioral characteristic that we can observe that will allow us to categorize 

individuals. So the variation is invisible to us. This exercise deals with heterogeneity in underlying 

survival probabilities, although heterogeneity in reproductive rates is possible (and likely) as well. 

We will begin with a harvested population that includes 2 groups of individuals, differing in survival only. 

We will consider an annual anniversary date at the beginning of the hunting season and apply a harvest 

rate (h) during the hunting season (keep things simple and assume no non-harvest mortality during the 

hunting season). The survivors of the hunting season then experience a probability of surviving 

nonhunting mortality sources (S).  Because only hunting occurs during the hunting season portion of the 

year and only nonhunting mortality occurs during the remainder of the year we can obtain total annual 

survival (STot) as the product of these net survival rates [STot = S(1-h)]. Recall that net rates associated 

with a specific mortality source are finite rates that would occur in the absence of any other mortality 

source,   

Take the following numerical example, beginning with 1000 individuals in each group:  

Group 1 (low survival):  S = 0.4, h = 0.2 

Group 2 (high survival):  S = 0.6, h = 0.1 

Before using the spreadsheet, answer the following questions: 
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1. What is the annual survival rate for each individual within each group? Does the example make 

sense? In other words, if such heterogeneity exists, is it sensible that the individuals with the 

lower probabilities of surviving nonhunting mortality also have lower probabilities of surviving 

hunting mortality. What kinds of biological stories might underlie such variation? 

2. We specified no time variation, so annual survival rates should be constant within each group. 

But what about overall survival of this 2-group mixture (i.e., what about annual survival rate of 

the combined groups). Should this also be constant over time? Why or why not? Assume that 

this example represented a cohort of young animals in year 1, aging and eventually reaching age 

10. If we had no knowledge of the 2-group mixture, what might we conclude about age-

specificity of survival?  

3. Similar question to above. Harvest rates within each group are specified as constant over time 

(e.g., we apply the same set of harvest regulations each year). Should the overall harvest rate of 

the 2-group mixture be constant as well? Why or why not?  

4. Use the spreadsheet, plug in the above survival and harvest rates and observe the trajectories of 

2-group survival and harvest over time. If the trajectories did not correspond to your answers 

above, can you now explain exactly what happened? 

5. So how might such heterogeneity be relevant to harvest theory? How might it be relevant to 

PVAs?  

6. What would you expect to happen if you increase (make the rate differences larger) or decrease 

the variation between the 2 groups?  Test your expectation with a couple of examples using the 

spreadsheet.  

7. What happens when you reverse the relationship between nonhunting survival and harvest 

rates (i.e., low nonhunting survival corresponds to low harvest rate and high nonhunting survival 

corresponds to high harvest rate)?     

   



Exercise 13: Direct Estimation of Lambda 

This exercise closely follows the content of the 6th lecture and is mostly intended to show 

how to run program MARK to compute estimates of lambda 'known-fate' data..  We 

have prepared exercises for use in either MARK or RMark.  

 

 

Data input 

Input data consists of individual capture-histories.  

The example we'll use for this model contains 2 groups of animals: Males and Females.  So, 

each capture-history will have 2 frequencies following the encounter-history. Since the data are 

not summarized, one of the frequencies will be zero and one will be one.  The following is a 

sample MARK input file (nwc_lamb.inp): 

/*1177-06702 M A*/00000000000000111111110111 1 0; 

/*1177-06708 F A*/00000000000011111111111100 0 1; 

/*1177-06724 M A*/00000000000011111111111100 1 0; 

/*1177-06728 M A*/00000000000001111111110000 1 0; 

/*1177-06730 F S1*/00000000000001000000000000 0 1; 

/*1177-06731 F S1*/00000000000001110000000000 0 1; 

/*1177-06732 M S2*/00000000000000011111111111 1 0; 

/*1177-06737 M A*/00000000000001110000000000 1 0; 

/*1177-06740 F S1*/00000000000001000000000000 0 1; 

 

Note:  Comments can appear in the input file, surrounded by “/*” and “*/”. 

For R users 



1) Open the file “ex13_direct_est_lambda.r” in your preferred text editor for R.  You will need 

to modify the working directory.  Execute the lines which clear the workspace, set the 

working directory and load the RMark library. 

 

rm(list=ls()); setwd('h:/x/workshops/uf2016/exercises/ex13_direct_est_lambda') 

library(RMark) 

 

2) The first step in using RMark is to convert the input file into an RMark input “data-frame”.   

This conversion is done with the “convert.inp” function.  The only required argument is the 

input filename (nwc_lamb.inp), but since we have 2 groups in our input file, we also need to 

specify the group names to the convert.inp function.  This is done with the group.df 

argument.  The converted data-frame is saved with the name, “owlinp”.  Execute that line, 

then type the new variable name into the R window. 

 

owlinp = convert.inp('nwc_lamb.inp',group.df=data.frame(sex=c('M','F'))) 

 

3) The 2
nd

 step is to create a processed-data variable which contains other variables needed to 

setup and run the MARK models.  The RMark function to do this is “process.data” and 

requires the converted input from the previous step, the type of MARK models which will 

be run, and the group variable name (if applicable).  Execute this line, then type ‘owlpr’ to 

see the contents of this variable. 

 

owlpr = process.data(owlinp,model='Pradrec',groups="sex") 

 

4) The 3
rd

 step is to create design-matrix data variables, needed by MARK to build models.  The 

RMARK function is “make.design.data” and the processed-data variable created in the 

previous step is needed as an argument to the function.  Execute this line and type ‘owldd’ 

to view the contents of this variable.  This is a list-type variable and it contains a data-frame 

variable (S) for the estimated parameter for the model-type (Known) we specified.  The 

columns of S are the variables we can use in building MARK models. 

 

owldd = make.design.data(owlpr) 

 

Modeling strategy is to develop  models corresponding to our hypotheses of how survival, 

fecundity and/or capture probabilities are affected by  sex and time. 

 

5) Now we’re ready to build and run our MARK models.  Instead of specifying each model and 

running it, we will create a model structure for each parameter which corresponds to our 



belief of what makes the parameter vary.  For example, we believe that survival (Phi) might 

be constant or might be time-specific.  So, we create two variables which contain a formula 

for a possible model: 

 

Phi.dot=list(formula=~1)  

Phi.t=list(formula=~time) 

 

Next, we create two more new variables containing formulae for our belief about capture 

probabilities: 

 

p.dot=list(formula=~1) 

p.t=list(formula=~time) 

p.s=list(formula=~sex) 

 

And two variables containing formulae for our belief about how fecundity might vary: 

 

f.dot=list(formula=~1) 

f.t=list(formula=~time) 

 

6) With these formula variables, we can create a list of all possible combinations of those 

parameters and formula using the “create.model.list” function. 

 

mod.list=create.model.list("Pradrec") 

 

7) Now, we can run all models in this list using the “mark.wrapper” function.  This function 

runs each model in the model list and saves the output of each model as a list variable.   

 

mod.out=mark.wrapper(mod.list,data=owlpr,ddl=owldd) 

 

8) The “mark.wrapper” function automatically creates a results AIC table, as well as storing the 

results of each model.  We can obtain the model table from the output variable, “mod.out” 

by selecting the sub-variable, “model.table” from the list variable, “mod.out”: 

 

tbl=mod.out$model.table 

 

and print the table (without 1
st

 3 columns) with: 

 

cat('\nTable of model results:\n') 



print(tbl[,-1:-3,])   #  print table (without redundant columns 1 to 3) 

 

Questions: 

1. Why do you suppose that scientists shifted from the use of matrix models 

to direct estimation of λt? 

2. Which model would you choose to best describe these data?  Why? 

3. Models included time-specific variation for survival and recruitment.   

Based on general principles of evolutionary ecology, which of these 

parameters would you think most likely to exhibit year-to-year variation?  

Does the evidence provided by model selection agree with this 

prediction? 

4. In the model with all parameters time-specific, are there any parameter 

estimates that you would view as unusable? If so, which estimates would 

you not use?   Why? 

5. So how are owls on this study area doing? Compute the proportional 

change in population size between years 4 and 23.  By what fraction has 

the population grown or declined? 

 

 

 

 



Exercise 13: Contributions to Lambda 

This exercise closely follows the content of the 6th lecture and is mostly intended to show how 

to run program MARK to compute seniority and capture probabilities from 'capture-recapture' 

data.  We have prepared exercises for use in RMark.  

 

 

Data input 

Background 

Data for this example came from the trapping of meadow voles, Microtus pennsylvanicus, at 

Patuxent Wildlife Research Center, Laurel, MD  (Nichols et al., 1984). Data were collected on a 

10 x 10 grid of trapping stations spaced at 7.6m intervals in old field habitat. A single modified 

Fitch live trap (Rose, 1973) was placed at each station. Hay and dried grass were placed in the 

traps and whole corn was used as bait.  Sampling occurred for five consecutive days each 

month, from June 1981 through December 1981. During each 5-day trapping session, traps 

were opened in the evening of the first day, checked the following morning, locked open during 

the day, and reset in the evening, with the sequence repeated each day until 5 days had 

elapsed. A racoon, Procyon lotor (later captured), visited the traps on the final two nights of the 

second trapping session, essentially leaving only 3 days of trapping for this session. At each 

capture, animals were examined for a tag, sexed, weighed, and examined for external 

reproductive characteristics. Tagged animals were ear tagged with numbered fingerling tags, 

and tag numbers of marked animals were recorded at each capture. 

 

We used 'adult' (>22g) animals and collapsed the 5 days of sampling each month into a single 

assessment of presence or absence, leaving 6 monthly sampling occasions.   

# Data input 

#   Input data consists of summarized frequencies of capture-histories. 

# 

#  The example we'll use for this model  contains 2 groups of animals:  Males and 



#  females, initially captured as adults. So, each  capture-history will 

#  have 2 frequencies  following the capture-history. The input file has already 

#  been created and is named: 'mp1age.inp'. 

# 

100000    7    8 /* F    M */; 

100000   -1   -3; 

110000   10   21; 

110000   -4   -2; 

111000    7    5; 

111100    2    3; 

111100    0   -1; 

#   :       :    : 

 

#  Explanation:  The 1st line indicates that 7 female and 8 male individuals were captured only 

in 

#                time period 1 and were released.  The 2nd line indicates that 1 female and 3 male 

#                individuals were captured onl in time period 1 and not released ("-" indicates  

#                not released). 
 
#  Here are the steps to run MARK on this input file: 
 
rm(list=ls())              #   clear workspacerm(list=ls())              #   clear workspacerm(list=ls())              #   clear workspacerm(list=ls())              #   clear workspace    
library(RMark)            #   add RMark functions to our R workspacelibrary(RMark)            #   add RMark functions to our R workspacelibrary(RMark)            #   add RMark functions to our R workspacelibrary(RMark)            #   add RMark functions to our R workspace    
 
#                convert MARK input file to RMARK data frame, while defining the 2 groups 
 
mpinp = mpinp = mpinp = mpinp = 
conconconconvert.inp('mp1age.inp',group.df=data.frame(sex=c('F','M')),use.comments=F)vert.inp('mp1age.inp',group.df=data.frame(sex=c('F','M')),use.comments=F)vert.inp('mp1age.inp',group.df=data.frame(sex=c('F','M')),use.comments=F)vert.inp('mp1age.inp',group.df=data.frame(sex=c('F','M')),use.comments=F)    
 
#                process data frame, specifying model type  
#              (Pradrec=Pradel model, recruitment parameterization) 
 
mppr = process.data(mpinp, model='Pradel', mppr = process.data(mpinp, model='Pradel', mppr = process.data(mpinp, model='Pradel', mppr = process.data(mpinp, model='Pradel', groups=c("sex"))groups=c("sex"))groups=c("sex"))groups=c("sex"))    
 
#                make design matrix data variables from processed data frame 
 
mpdd = make.design.data(mppr)mpdd = make.design.data(mppr)mpdd = make.design.data(mppr)mpdd = make.design.data(mppr)    
 
# Modeling strategy is to develop a pre-defined set of models. Each model represents a 
# plausible hypothesis about survival or capture probabilities of the animals. 
 
Gamma.dot=list(formula=~1)Gamma.dot=list(formula=~1)Gamma.dot=list(formula=~1)Gamma.dot=list(formula=~1)    
Gamma.s=list(formula=~sex)Gamma.s=list(formula=~sex)Gamma.s=list(formula=~sex)Gamma.s=list(formula=~sex)    
Gamma.t=list(formula=~time)Gamma.t=list(formula=~time)Gamma.t=list(formula=~time)Gamma.t=list(formula=~time)    
Gamma.sXt=list(formula=~sex*time)Gamma.sXt=list(formula=~sex*time)Gamma.sXt=list(formula=~sex*time)Gamma.sXt=list(formula=~sex*time)    
Gamma.sPt=list(formula=~sex+time)Gamma.sPt=list(formula=~sex+time)Gamma.sPt=list(formula=~sex+time)Gamma.sPt=list(formula=~sex+time)    
p.dot=list(formula=~1)p.dot=list(formula=~1)p.dot=list(formula=~1)p.dot=list(formula=~1)    
p.s=list(formula=~sex)p.s=list(formula=~sex)p.s=list(formula=~sex)p.s=list(formula=~sex)    
p.t=list(p.t=list(p.t=list(p.t=list(formula=~time)formula=~time)formula=~time)formula=~time)    
p.sXt=list(formula=~sex*time)p.sXt=list(formula=~sex*time)p.sXt=list(formula=~sex*time)p.sXt=list(formula=~sex*time)    
p.sPt=list(formula=~sex+time)p.sPt=list(formula=~sex+time)p.sPt=list(formula=~sex+time)p.sPt=list(formula=~sex+time)    
    
mod.list=create.model.list("Pradel")mod.list=create.model.list("Pradel")mod.list=create.model.list("Pradel")mod.list=create.model.list("Pradel")    
    
#                create AIC table of model results for model comparison 



mod.out=mark.wrapper(mod.list,data=mppr,ddl=mpdd)mod.out=mark.wrapper(mod.list,data=mppr,ddl=mpdd)mod.out=mark.wrapper(mod.list,data=mppr,ddl=mpdd)mod.out=mark.wrapper(mod.list,data=mppr,ddl=mpdd)    
tbl=tbl=tbl=tbl=mod.out$model.tablemod.out$model.tablemod.out$model.tablemod.out$model.table    
    
#  print table (without redundant columns 1 & 2) 
    
print(tbl[,print(tbl[,print(tbl[,print(tbl[,----1:1:1:1:----2,])  2,])  2,])  2,])    
 
#   print/plot seniority estimates from top model... 
 
i=as.numeric(rownames(tbl))[1]  #  get top model number from tablei=as.numeric(rownames(tbl))[1]  #  get top model number from tablei=as.numeric(rownames(tbl))[1]  #  get top model number from tablei=as.numeric(rownames(tbl))[1]  #  get top model number from table    
cat('cat('cat('cat('\\\\nEstimates from top model:',as.chanEstimates from top model:',as.chanEstimates from top model:',as.chanEstimates from top model:',as.character(tbl$model[1]),'racter(tbl$model[1]),'racter(tbl$model[1]),'racter(tbl$model[1]),'\\\\n')n')n')n')    
print(mod.out[[i]]$results$real)  #  print estimates from top modelprint(mod.out[[i]]$results$real)  #  print estimates from top modelprint(mod.out[[i]]$results$real)  #  print estimates from top modelprint(mod.out[[i]]$results$real)  #  print estimates from top model    
 
plot(1:5,mod.out[[i]]$results$real$estimate[1:5],type='b',ylim=c(0,1),plot(1:5,mod.out[[i]]$results$real$estimate[1:5],type='b',ylim=c(0,1),plot(1:5,mod.out[[i]]$results$real$estimate[1:5],type='b',ylim=c(0,1),plot(1:5,mod.out[[i]]$results$real$estimate[1:5],type='b',ylim=c(0,1),    
                    main=as.character(tbl$model[1]),xlab='time',ylab='seniority')main=as.character(tbl$model[1]),xlab='time',ylab='seniority')main=as.character(tbl$model[1]),xlab='time',ylab='seniority')main=as.character(tbl$model[1]),xlab='time',ylab='seniority')    
 
 
Questions: 
 
(1) Define in words the probability estimated by the seniority parameter, gamma. 
 
(2) In this example, do the gammas suggest that survival (of previous members of the population) or 
recruitment (of new members) make the larger contributionto population growth?  
 
(3) This vole example is from Maryland and uses monthly intervals between trapping sessions. If you had to 
guess, during what season of the year do you think the last 2 months occurred? 
 
(4) The various methods that we have discussed for making inferences about lambda and contributions to 
lambda are all interrelated. Say we used Pradel's full temporal symmetry model for inference about lambda, but 
used the phi(i), f(i) parameterization (survival and per capita recruitment). How could you use these parameters 
to estimate the same relative contributions provided by the gammas?   

 


